Bcl-2 overexpression does not enhance in vivo axonal regeneration of retinal ganglion cells after peripheral nerve transplantation in adult mice.

نویسندگان

  • Tetsu Inoue
  • Mizuho Hosokawa
  • Katsuko Morigiwa
  • Yuichi Ohashi
  • Yutaka Fukuda
چکیده

Optic nerve (ON) injury in adult mammals causes retinal ganglion cell (RGC) death and subsequent visual loss. Recovery of vision requires both rescuing axotomized RGCs and inducing their axonal regeneration. Axotomized RGCs are significantly rescued by overexpression of bcl-2, an anti-apoptotic gene. However, whether bcl-2 affects axonal regeneration is controversial. In neonatal bcl-2 transgenic mice (bcl-2 mice), optic tract regeneration after tectal lesion was promoted (Chen et al., 1997), whereas ON regeneration after ON crush was not (Lodovichi et al., 2001). These conflicting results may be attributable to different environments between tectum and ON. We tested here whether bcl-2 overexpression enhances in vivo RGC axonal regeneration in adult mice through a permissive environment in the peripheral nerve (PN) graft. Four weeks after PN transplantation to the proximal ON stump, we assessed the number of surviving and regenerating RGCs by retrograde labeling. Although the survival rate in bcl-2 mice was significantly enhanced compared with that in wild-type (wt) mice, the regeneration rate was not enhanced. In both bcl-2 and wt mice, RT97 immunostaining of the PN-grafted retinas revealed some RGC axons regrowing intraretinally but repulsed at the optic disk. To circumvent this repulsive barrier, we directly transplanted the PN graft to the partially injured retina and compared regeneration rates between these mice. Here again the regeneration rate in bcl-2 mice did not exceed that in wt mice. These findings indicate that bcl-2 overexpression enhances survival but not axonal regeneration of adult RGCs even within a permissive environment.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Optic nerve crush: axonal responses in wild-type and bcl-2 transgenic mice.

Retinal ganglion cells of transgenic mice overexpressing the anti-apoptotic protein Bcl-2 in neurons show a dramatic increase of survival rate after axotomy. We used this experimental system to test the regenerative potentials of central neurons after reduction of nonpermissive environmental factors. Survival of retinal ganglion cells 1 month after intracranial crush of the optic nerve was foun...

متن کامل

Axonal regeneration of retinal ganglion cells depending on the distance of axotomy in adult hamsters.

PURPOSE To examine the relationship between the distance of axotomy and axonal regeneration of injured retinal ganglion cells (RGCs) systematically and the effect of a predegenerated (pretransected or precrushed) peripheral nerve (PN) graft on axonal regeneration of RGCs axotomized at a definite distance (0.5 mm from the optic disc) in comparison with a normal PN graft. METHODS The optic nerv...

متن کامل

Transplantation of Olfactory Mucosa Improve Functional Recovery and Axonal Regeneration Following Sciatic Nerve Repair in Rats

Background: Olfactory ensheathing glia (OEG) has been shown to have a neuroprotective effect after being transplanted in rats with spinal cord injury. This study was conducted to determine the possible beneficial results of olfactory mucosa transplantation (OMT) which is a source of OEG on functional recovery and axonal regeneration after transection of the sciatic nerve. Methods: In this study...

متن کامل

Axonal regeneration of retinal ganglion cells after optic nerve pre-lesions and attachment of normal or pre-degenerated peripheral nerve grafts.

Axonal regeneration of retinal ganglion cells (RGCs) into a normal or pre-degenerated peripheral nerve graft after an optic nerve pre-lesion was investigated. A pre-lesion performed 1-2 weeks before a second lesion has been shown to enhance axonal regeneration in peripheral nerves (PN) but not in optic nerves (ON) in mammals. The lack of such a beneficial pre-lesion effect may be due to the lon...

متن کامل

Intraocular elevation of cyclic AMP potentiates ciliary neurotrophic factor-induced regeneration of adult rat retinal ganglion cell axons.

In vitro, cyclic AMP (cAMP) elevation alters neuronal responsiveness to diffusible growth factors and myelin-associated inhibitory molecules. Here we used an established in vivo model of adult central nervous system injury to investigate the effects of elevated cAMP on neuronal survival and axonal regeneration. We studied the effects of intraocular injections of neurotrophic factors and/or a cA...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of neuroscience : the official journal of the Society for Neuroscience

دوره 22 11  شماره 

صفحات  -

تاریخ انتشار 2002